cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157721 a(n) = 0 if n is 1 or a prime, otherwise a(n) = product of composite (nonprime) divisors of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 6, 0, 32, 9, 10, 0, 288, 0, 14, 15, 512, 0, 972, 0, 800, 21, 22, 0, 55296, 25, 26, 243, 1568, 0, 27000, 0, 16384, 33, 34, 35, 1679616, 0, 38, 39, 256000, 0, 74088, 0, 3872, 6075, 46, 0, 42467328, 49, 12500, 51, 5408, 0, 1417176, 55, 702464, 57, 58, 0
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2009

Keywords

Comments

a(n) = 0 if n = 1 or n is prime; a(n) = n if n is semiprime (A001358). a(c) = A007955(c) / A007947(c) = (c^(A000005(c)/2)) / A007947(c) = A087652(c), for c = composite numbers (A002808). a(p) = A087652(p) - 1 = 0, for p = primes (A000040).

Examples

			a(12) = 4*6*12 = 288, composite divisors = {4,6,12}.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) if isprime(n) then 0 else convert(remove(isprime,numtheory:-divisors(n)),`*`) fi end proc;
    f(1):= 0:
    map(f, [$1..100]); # Robert Israel, Jul 31 2024
  • Mathematica
    f[n_] := If[n == 1 || PrimeQ@n, 0, Times @@ Select[Divisors@n, ! PrimeQ@# &]]; Array[f, 60] (* Robert G. Wilson v, May 04 2009 *)

Extensions

More terms from Robert G. Wilson v, May 04 2009