A157851 Number of possible Fischer Random Chess games at the end of the n-th ply.
960, 18882, 371766, 8224968, 181106056, 4433048830, 107637760217, 2854198413886, 75006431287937
Offset: 0
Examples
a(0) = 4 (Bishop) * 4 (Bishop) * 6 (Queen) * 10 (Knights) * 1 (King and Rooks) = 960. a(1) = 36*18 + 204*19 + 204*19 + 516*20 + 90 + 72 = 18882. a(2) = 22*18^2 + (162+160+8+6)*19^2 + (454+28+22+20+16)*20^2 + (34+28)*21^2 = 371766.
Links
- Chessgames.com, Fischerandom Chess Generator
- Chessvariants.com, Fischer Random Chess
- Richard Pijl, The Baron
- Wikipedia, Chess960
Crossrefs
Programs
-
Python
import chess def A157851(n, b = None): return (b.legal_moves.count() if b else 960) if not n else sum(b.push(m) or A157851(n-1, b)+(not b.pop()) for m in b.legal_moves) if b else sum(A157851(n-1, chess.Board.from_chess960_pos(s)) for s in range(960)) # (For illustration, slow for n > 3.) - M. F. Hasler, Apr 25 2023
Extensions
Corrected and edited by Johannes W. Meijer, Feb 25 2010, Mar 03 2010
a(6) added by Richard Pijl (richard.pijl(AT)telenet.be). - Johannes W. Meijer, May 29 2010
a(3)-a(6) corrected by François Labelle, Dec 05 2017
a(7)-a(8) from François Labelle, Jan 18 2018
Comments