A157870 a(n) = (4*n+1)*(4*n+2) = (4*n+2)!/(4*n)!.
2, 30, 90, 182, 306, 462, 650, 870, 1122, 1406, 1722, 2070, 2450, 2862, 3306, 3782, 4290, 4830, 5402, 6006, 6642, 7310, 8010, 8742, 9506, 10302, 11130, 11990, 12882, 13806, 14762, 15750, 16770, 17822, 18906, 20022, 21170, 22350, 23562, 24806, 26082, 27390, 28730, 30102, 31506, 32942
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
(4*n+1)*(4*n+2); // Vincenzo Librandi Jul 10 2012
-
Mathematica
Table[(4n+1)*(4n+2),{n,0,50}] (* Vincenzo Librandi, Jul 10 2012 *)
-
PARI
a(n)=(4*n+1)*(4*n+2) \\ Charles R Greathouse IV, Jun 17 2017
Formula
From Vincenzo Librandi, Jul 10 2012: (Start)
G.f.: 2*(1+12*x+3*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/8 + log(2)/4.
Sum_{n>=0} (-1)^n/a(n) = ((sqrt(2)-1)*Pi + sqrt(2)*log((2+sqrt(2))/(2-sqrt(2))))/8. (End)
From Elmo R. Oliveira, Oct 30 2024: (Start)
E.g.f.: 2*exp(x)*(1 + 14*x + 8*x^2).
Extensions
Definition corrected and sequence extended by R. J. Mathar, Mar 11 2009