cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157904 INVERT transform of A000055.

Original entry on oeis.org

1, 2, 4, 8, 17, 36, 78, 170, 375, 833, 1870, 4229, 9654, 22223, 51622, 120961, 286029, 682398, 1642821, 3990231, 9777678, 24166327, 60233185, 151350709, 383287499, 977918150, 2512805727, 6500178867, 16921248231, 44310852884, 116678914575
Offset: 0

Views

Author

Gary W. Adamson, Mar 08 2009

Keywords

Comments

Note that the correct INVERT transform of A000055 (recognizing the offsets) would be 1, 1, 2, 4, 9, 20, 46, 106, 248, 583, 1386,... - R. J. Mathar, Sep 20 2020

Examples

			a(3) = 8 = (1, 1, 1) dot (1, 2, 4) + 1 = 7 + 1 = 8; where the operation uses ascending terms of A000055: (1, 1, 1, 1, 2, 3, 6, 11,...) and an equal number of ongoing descending terms of A157904. Take the dot product and add to the next term of A000055. a(4) = 17 = (1, 1, 1, 1) dot (1, 2, 4, 8) + 2 = 15 + 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; local d, j; if n<=1 then n else (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1) fi end: t:= proc(n) option remember; local k; `if`(n=0, 1, b(n)- (add(b(k) *b(n-k), k=1..n-1) -`if`(type(n, odd), 0, b(n/2)))/2) end: a:= proc(n) option remember; local i; if n<=0 then 1 else add(t(i)*a(n-i-1),i=0..n) fi end: seq(a(n), n=0..35);  # Alois P. Heinz, Mar 31 2009
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d b[d], {d, Divisors[j]}] b[n - j], {j, 1, n - 1}]/(n - 1)];
    t[n_] := t[n] = If[n == 0, 1, b[n] - (Sum[b[k] b[n - k], {k, 1, n - 1}] - If[OddQ[n], 0, b[n/2]])/2];
    a[n_] := a[n] = If[n <= 0, 1, Sum[t[i] a[n - i - 1], {i, 0, n}]];
    a /@ Range[0, 30] (* Jean-François Alcover, Sep 22 2020, after Alois P. Heinz *)

Formula

INVERT transform of A000055: (1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106,...).

Extensions

More terms from Alois P. Heinz, Mar 31 2009