A158045 Determinant of power series with alternate signs of gamma matrix with determinant 2!.
2, 0, 26, 0, 502, 0, 10306, 0, 213902, 0, 4448666, 0, 92558182, 0, 1925894386, 0, 40073418302, 0, 833837682506, 0, 17350295562262, 0, 361020847688866, 0, 7512036585662702, 0, 156308684773943546, 0, 3252434233373292742, 0, 67675884159595889746, 0
Offset: 1
Keywords
Examples
a(1) = Determinant(A) = 2! = 2.
References
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.
Programs
-
Maple
seq(Determinant(sum(A^i*(-1)^(i-1),i=1..n)), n=1..30);
-
PARI
vector(100, n, matdet(sum(k=1, n, [1,1,1 ; 1,2,1 ; 1,2,3]^k*(-1)^(k-1)))) \\ Colin Barker, Jul 13 2014
Formula
Empirical g.f.: -2*x*(2*x^2 -1)*(4*x^4 -11*x^2 +1) / ((x -1)*(x +1)*(2*x -1)*(2*x +1)*(2*x^2 -5*x +1)*(2*x^2 +5*x +1)). - Colin Barker, Jul 13 2014
Extensions
More terms, and offset changed to 1 by Colin Barker, Jul 13 2014
Comments