A158058 a(n) = 16*n^2 - 2*n.
14, 60, 138, 248, 390, 564, 770, 1008, 1278, 1580, 1914, 2280, 2678, 3108, 3570, 4064, 4590, 5148, 5738, 6360, 7014, 7700, 8418, 9168, 9950, 10764, 11610, 12488, 13398, 14340, 15314, 16320, 17358, 18428, 19530, 20664, 21830, 23028, 24258, 25520
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(4^2*t-2)).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A125169.
Programs
-
Magma
[16*n^2-2*n: n in [1..40]]
-
Maple
seq(16*n^2-2*n,n=1..40); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
LinearRecurrence[{3,-3,1},{14,60,138},40]
-
PARI
a(n) = 16*n^2-2*n.
Formula
G.f.: x*(-14 - 18*x)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Comments