cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158062 a(n) = 36*n^2 - 2*n.

Original entry on oeis.org

34, 140, 318, 568, 890, 1284, 1750, 2288, 2898, 3580, 4334, 5160, 6058, 7028, 8070, 9184, 10370, 11628, 12958, 14360, 15834, 17380, 18998, 20688, 22450, 24284, 26190, 28168, 30218, 32340, 34534, 36800, 39138, 41548, 44030, 46584, 49210, 51908
Offset: 1

Views

Author

Vincenzo Librandi, Mar 12 2009

Keywords

Comments

The identity (36*n - 1)^2 - (36*n^2 - 2*n)*6^2 = 1 can be written as (A044102(n+1) - 1)^2 - a(n)*6^2 = 1. - Vincenzo Librandi, Feb 11 2012
The continued fraction expansion of sqrt(a(n)) is [6n-1; {1, 4, 1, 12n-2}]. - Magus K. Chu, Nov 08 2022

Crossrefs

Cf. A044102.

Programs

  • Magma
    [36*n^2 - 2*n: n in [1..50]]
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {34, 140, 318}, 50] (* Vincenzo Librandi, Feb 11 2012 *)
  • PARI
    for(n=1, 50, print1(36*n^2 - 2*n ", ")); \\ Vincenzo Librandi, Feb 11 2012

Formula

G.f.: x*(-34 - 38*x)/(x-1)^3. - Vincenzo Librandi, Feb 11 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 11 2012