A158062 a(n) = 36*n^2 - 2*n.
34, 140, 318, 568, 890, 1284, 1750, 2288, 2898, 3580, 4334, 5160, 6058, 7028, 8070, 9184, 10370, 11628, 12958, 14360, 15834, 17380, 18998, 20688, 22450, 24284, 26190, 28168, 30218, 32340, 34534, 36800, 39138, 41548, 44030, 46584, 49210, 51908
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(6^2*t-2)).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A044102.
Programs
-
Magma
[36*n^2 - 2*n: n in [1..50]]
-
Mathematica
LinearRecurrence[{3, -3, 1}, {34, 140, 318}, 50] (* Vincenzo Librandi, Feb 11 2012 *)
-
PARI
for(n=1, 50, print1(36*n^2 - 2*n ", ")); \\ Vincenzo Librandi, Feb 11 2012
Formula
G.f.: x*(-34 - 38*x)/(x-1)^3. - Vincenzo Librandi, Feb 11 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 11 2012
Comments