A158120 Unsigned bisection of A157304 and A157305.
1, 2, 26, 1378, 141202, 22716418, 5218302090, 1619288968386, 653379470919714, 333014944014777730, 209463165121436380282, 159492000935562428176162, 144654795258284936534929586, 154140229756873813307283828098
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 26*x^2 + 1378*x^3 + 141202*x^4 +... RELATED FUNCTIONS. G.f. of A157305, B(x) = x + A(-x^2), satisfies the condition that both B(x) and F(x) = B(x*F(x)^2) = o.g.f. of A157307 have zeros for every other coefficient after initial terms: A157305 = [1,1,-2,0,26,0,-1378,0,141202,0,-22716418,0,...]; A157307 = [1,1,0,-7,0,242,0,-17771,0,2189294,0,-404590470,0,...]. ... G.f. of A157304, C(x) = 2+x - A(-x^2), satisfies the condition that both C(x) and G(x) = C(x/G(x)^2) = o.g.f. of A157302 have zeros for every other coefficient after initial terms: A157308 = [1,1,2,0,-26,0,1378,0,-141202,0,22716418,0,...]; A157302 = [1,1,0,-5,0,183,0,-14352,0,1857199,0,-355082433,0,...]. ...
Links
- Paul D. Hanna, Table of n, a(n) for n=0..50
Programs
-
PARI
{a(n)=local(A=[1, 1]); for(i=1, 2*n, if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); (-1)^n*Vec(x/serreverse(x*Ser(A)))[2*n+1]}