A158232 Numbers which yield primes when "13" is prefixed or appended: N natural number is a member of the sequence, if P="13N" (prefixed 13) and A="N13" (appended 13) are prime.
1, 19, 21, 27, 61, 103, 121, 127, 147, 159, 177, 183, 187, 217, 241, 259, 267, 327, 331, 337, 367, 381, 411, 477, 523, 553, 567, 577, 591, 633, 681, 687, 693, 709, 723, 759, 807, 829, 873, 903, 931, 997, 1009, 1011, 1041, 1059, 1129, 1149, 1213, 1231, 1251
Offset: 1
Examples
19: 1319 and 1913 are primes => a(2)=19; 7 is not a term: 137 is prime but 713=23 * 31 is not.
References
- A. Weil, Number theory: an approach through history, Birkhäuser, 1984.
- Richard E. Crandall, Carl Pomerance, Prime Numbers, Springer 2005.
- Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A157772.
Programs
-
Maple
A055642 := proc(n) max(1,ilog10(n)+1) ; end proc: cat2 := proc(a,b) a*10^A055642(b)+b ; end proc: A158232 := proc(n) option remember; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if isprime(cat2(13,a)) and isprime(cat2(a,13)) then return a ; end if ; end do ; end if; end proc: seq(A158232(n),n=1..80) ; # R. J. Mathar, Nov 11 2009
-
Mathematica
Select[Range[1300],And@@PrimeQ[{13 10^IntegerLength[#]+#,100#+13}]&] (* Harvey P. Dale, May 28 2012 *)
Comments