cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158264 Table where row n lists the coefficients in the (2^n)-th iteration of x+x^2 for n>=0, read by antidiagonals not including trailing zeros in rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 2, 1, 8, 12, 1, 1, 16, 56, 30, 1, 32, 240, 364, 64, 1, 64, 992, 3480, 2240, 118, 1, 128, 4032, 30256, 49280, 13188, 188, 1, 256, 16256, 252000, 912640, 685160, 74760, 258, 1, 512, 65280, 2056384, 15665664, 27297360, 9383248, 409836, 302, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2009

Keywords

Examples

			Table of coefficients in the (2^n)-th iteration of x+x^2 begins:
1,1,0,0,0,0,0,0,0,0,0,0,0,0,...;
1,2,2,1,0,0,0,0,0,0,0,0,0,0,...;
1,4,12,30,64,118,188,258,302,298,244,162,84,32,8,1,0,0,0,0,0,...;
1,8,56,364,2240,13188,74760,409836,2179556,11271436,56788112,...;
1,16,240,3480,49280,685160,9383248,126855288,1695695976,...;
1,32,992,30256,912640,27297360,810903456,23950328688,...;
1,64,4032,252000,15665664,969917088,59855127360,3683654668512,...;
1,128,16256,2056384,259445760,32668147008,4106848523904,...;
1,256,65280,16613760,4222658560,1072200161920,272033712041216,...;
1,512,261632,133563136,68139438080,34745409189120,17710292513905152,...;
...
The initial column g.f.s are as follows:
k=1: 1/(1-2x);
k=2: 2x/((1-2x)(1-4x));
k=3: (x+16x^2)/((1-2x)(1-4x)(1-8x));
k=4: (64x^2+320x^3)/((1-2x)(1-4x)(1-8x)(1-16x));
k=5: (118x^2+5872x^3+13824x^4)/((1-2x)(1-4x)(1-8x)(1-16x)(1-32x));
...
The coefficients in the numerators of column g.f.s forms a triangle:
1;
0,2;
0,1,16;
0,0,64,320;
0,0,118,5872,13824;
0,0,188,51072,942592,1179648;
0,0,258,344304,28261632,278323200,179306496;
0,0,302,2025536,610203136,25398255616,152690491392,37044092928; ...
in which the main diagonal starts:
[1,2,16,320,13824,1179648,179306496,37044092928,-9947144257536,...];
and the row sums of the triangle begin:
[1,2,17,384,19814,2173500,486235890,215745068910,186016597075722,...].
		

Crossrefs

Cf. diagonals: A158260, A158261, A158262, A158263.
Cf. related table: A122888.

Programs

  • PARI
    {T(n, k)=local(G=x+x^2+x*O(x^k)); if(n<1, 0,for(i=1, n-1, G=subst(G, x, G)); polcoeff(G, k, x))}

Formula

G.f. of column k: P_k(x)/Product_{j=1,k} (1-2^j*x) where P_k(x) is a polynomial of degree k-1 for k>=1.