A158264 Table where row n lists the coefficients in the (2^n)-th iteration of x+x^2 for n>=0, read by antidiagonals not including trailing zeros in rows.
1, 1, 1, 1, 2, 1, 4, 2, 1, 8, 12, 1, 1, 16, 56, 30, 1, 32, 240, 364, 64, 1, 64, 992, 3480, 2240, 118, 1, 128, 4032, 30256, 49280, 13188, 188, 1, 256, 16256, 252000, 912640, 685160, 74760, 258, 1, 512, 65280, 2056384, 15665664, 27297360, 9383248, 409836, 302, 1
Offset: 0
Examples
Table of coefficients in the (2^n)-th iteration of x+x^2 begins: 1,1,0,0,0,0,0,0,0,0,0,0,0,0,...; 1,2,2,1,0,0,0,0,0,0,0,0,0,0,...; 1,4,12,30,64,118,188,258,302,298,244,162,84,32,8,1,0,0,0,0,0,...; 1,8,56,364,2240,13188,74760,409836,2179556,11271436,56788112,...; 1,16,240,3480,49280,685160,9383248,126855288,1695695976,...; 1,32,992,30256,912640,27297360,810903456,23950328688,...; 1,64,4032,252000,15665664,969917088,59855127360,3683654668512,...; 1,128,16256,2056384,259445760,32668147008,4106848523904,...; 1,256,65280,16613760,4222658560,1072200161920,272033712041216,...; 1,512,261632,133563136,68139438080,34745409189120,17710292513905152,...; ... The initial column g.f.s are as follows: k=1: 1/(1-2x); k=2: 2x/((1-2x)(1-4x)); k=3: (x+16x^2)/((1-2x)(1-4x)(1-8x)); k=4: (64x^2+320x^3)/((1-2x)(1-4x)(1-8x)(1-16x)); k=5: (118x^2+5872x^3+13824x^4)/((1-2x)(1-4x)(1-8x)(1-16x)(1-32x)); ... The coefficients in the numerators of column g.f.s forms a triangle: 1; 0,2; 0,1,16; 0,0,64,320; 0,0,118,5872,13824; 0,0,188,51072,942592,1179648; 0,0,258,344304,28261632,278323200,179306496; 0,0,302,2025536,610203136,25398255616,152690491392,37044092928; ... in which the main diagonal starts: [1,2,16,320,13824,1179648,179306496,37044092928,-9947144257536,...]; and the row sums of the triangle begin: [1,2,17,384,19814,2173500,486235890,215745068910,186016597075722,...].
Programs
-
PARI
{T(n, k)=local(G=x+x^2+x*O(x^k)); if(n<1, 0,for(i=1, n-1, G=subst(G, x, G)); polcoeff(G, k, x))}
Formula
G.f. of column k: P_k(x)/Product_{j=1,k} (1-2^j*x) where P_k(x) is a polynomial of degree k-1 for k>=1.