A158267 Inverse Euler transform of A156305.
1, 4, 13, 59, 151, 916, 1961, 12035, 35110, 166204, 384781, 3154367, 5600323, 34384676, 124093963, 582290595, 1235438587, 9831378712, 18602770421, 144738772109, 410101237013, 1721535323380, 4295702988313, 40309503022439
Offset: 1
Keywords
Examples
Let G(x) = g.f. of A156305: G(x) = 1 + x + 5*x^2 + 18*x^3 + 87*x^4 + 290*x^5 + 1553*x^6 +... G(x) = 1/[(1-x)*(1-x^2)^4*(1-x^3)^13*(1-x^4)^59*(1-x^5)^151*...].
Programs
-
Mathematica
Table[Sum[DivisorSigma[1, d]*Binomial[2*d - 1, d]*MoebiusMu[n/d], {d, Divisors[n]}] / n, {n, 1, 30}] (* Vaclav Kotesovec, Oct 09 2019 *)
-
PARI
{a(n)=(1/n)*sumdiv(n,d, sigma(d)*binomial(2*d-1, d)*moebius(n/d))}
Formula
a(n) = (1/n)*Sum_{d|n} sigma(d)*C(2d-1,d)*moebius(n/d).
Comments