cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158267 Inverse Euler transform of A156305.

Original entry on oeis.org

1, 4, 13, 59, 151, 916, 1961, 12035, 35110, 166204, 384781, 3154367, 5600323, 34384676, 124093963, 582290595, 1235438587, 9831378712, 18602770421, 144738772109, 410101237013, 1721535323380, 4295702988313, 40309503022439
Offset: 1

Views

Author

Paul D. Hanna, Apr 09 2009

Keywords

Comments

G.f. of A156305: exp( Sum_{n>=1} sigma(n)*C(2*n-1,n)*x^n/n ), where C(2n-1,n) = A001700(n-1).

Examples

			Let G(x) = g.f. of A156305:
G(x) = 1 + x + 5*x^2 + 18*x^3 + 87*x^4 + 290*x^5 + 1553*x^6 +...
G(x) = 1/[(1-x)*(1-x^2)^4*(1-x^3)^13*(1-x^4)^59*(1-x^5)^151*...].
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, d]*Binomial[2*d - 1, d]*MoebiusMu[n/d], {d, Divisors[n]}] / n, {n, 1, 30}] (* Vaclav Kotesovec, Oct 09 2019 *)
  • PARI
    {a(n)=(1/n)*sumdiv(n,d, sigma(d)*binomial(2*d-1, d)*moebius(n/d))}

Formula

a(n) = (1/n)*Sum_{d|n} sigma(d)*C(2d-1,d)*moebius(n/d).