cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158344 Number of n-colorings of the Folkman Graph.

Original entry on oeis.org

0, 0, 2, 18648, 45718044, 22839203000, 3322954977390, 196998967990272, 6100155102337688, 116724860607772944, 1546577491554833850, 15357702814950199880, 120959689823708363892, 787872289121987384328, 4380104959751908990694, 21297248362250478298800
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2009

Keywords

Comments

The Folkman Graph has 20 vertices and 40 edges. It is the semi-symmetric graph with the fewest possible vertices.

Programs

  • Maple
    a:= n-> n^20 -40*n^19 +780*n^18 -9850*n^17 +90300*n^16 -638683*n^15 +3616080*n^14 -16782060*n^13 +64834630*n^12 -210500726*n^11 +577081604*n^10 -1336290915*n^9 +2602586625*n^8 -4222943355*n^7 +5616671680*n^6 -5968728608*n^5 +4868919865*n^4 -2855170950*n^3 +1066503307*n^2 -189239685*n:
    seq(a(n), n=0..30);

Formula

a(n) = n^20 -40*n^19 + ... (see Maple program).