A158420 a(n) = 1024*n^2 - 2*n.
1022, 4092, 9210, 16376, 25590, 36852, 50162, 65520, 82926, 102380, 123882, 147432, 173030, 200676, 230370, 262112, 295902, 331740, 369626, 409560, 451542, 495572, 541650, 589776, 639950, 692172, 746442, 802760, 861126, 921540, 984002
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1
- E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(32^2*t-2)).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A158421.
Programs
-
Magma
I:=[1022, 4092, 9210]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
-
Mathematica
LinearRecurrence[{3,-3,1},{1022,4092,9210},50]
-
PARI
a(n) = 1024*n^2 - 2*n
Formula
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-1022-1026*x)/(x-1)^3.
Comments