cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158432 Number of permutations of 1..n containing the relative rank sequence { 45312 } at any spacing.

Original entry on oeis.org

1, 26, 458, 6996, 101072, 1438112, 20598112, 300892896, 4521034917, 70286670034, 1135485759114, 19121776482564, 336412530327804, 6191800556586104, 119301546930406184, 2406376964044265344, 50786085223779295344, 1120447461653440780128, 25810064637612342838624
Offset: 5

Views

Author

R. H. Hardin, Mar 18 2009

Keywords

Comments

Same series for 54321 12345 45321 21345 12354 54312 34521 32145 12543 54123 23451 43215 15432 51234 21354 34512 32154 21543 45123.

Crossrefs

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                     add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    a:= n-> n! -g(n, 4, []):
    seq(a(n), n=5..25);  # Alois P. Heinz, Jul 05 2012
    # second Maple program
    a:= proc(n) option remember; `if`(n<5, 0, `if`(n=5, 1,
         ((132-142*n-301*n^2-35*n^3+25*n^4+n^5)*a(n-1)
         -2*(10*n^3+33*n^2-181*n-2)*(n-1)^2*a(n-2)
         +64*(n-2)^2*(n-1)^3*a(n-3))/ ((n+4)*(n-5)*(n+3)^2)))
        end:
    seq(a(n), n=5..30);  # Alois P. Heinz, Sep 26 2012
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
    a[n_] := n! - g[n, 4, {}];
    Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Jun 19 2018, after Alois P. Heinz's first program *)

Formula

a(n) = A214152(n,5) = A000142(n)-A047889(n) = A000142(n)-A214015(n,4).

Extensions

Extended beyond a(16) by Alois P. Heinz, Jul 05 2012