A158449 The number of sigma-admissible subsets of {1,2,...,n} as defined by Marzuola-Miller.
1, 0, 1, 0, 2, 0, 3, 1, 7, 3, 17, 7, 43, 24, 118, 74, 330, 206, 888, 612, 2571, 1810, 7274, 5552, 21099, 16334, 61252, 49025, 179239, 146048, 523455, 440980, 1554184, 1315927, 4572794, 3972193, 13569220, 11873290, 40263681, 35824869, 119901609, 107397585
Offset: 1
Keywords
Examples
a(1)=a(3)=1 since {0,2,4,5,6,7,...} and {0,1,4,5,8,9,10,11,...} are the only sets satisfying the required conditions.
Links
- Martin Fuller, Table of n, a(n) for n = 1..65
- S. R. Finch, Monoids of natural numbers [Broken link]
- S. R. Finch, Monoids of natural numbers, March 17, 2009. [Cached copy, with permission of the author]
- Martin Fuller, C program
- J. Marzuola and A. Miller, Counting Numerical Sets with No Small Atoms, arXiv:0805.3493 [math.CO], 2008.
- J. Marzuola and A. Miller, Counting numerical sets with no small atoms, J. Combin. Theory A 117 (6) (2010) 650-667.
Programs
-
C
See Martin Fuller link
Formula
Recursively related to A164047 by the formula Asigma(2k+1)' = 2Asigma(2k)'-Asigma(k)
Extensions
Definition rephrased by Jeremy L. Marzuola (marzuola(AT)math.uni-bonn.de), Aug 08 2009
Edited by R. J. Mathar, Aug 31 2009
a(33) onwards from Martin Fuller, Sep 13 2023
Comments