A158454 Riordan array (1/(1-x^2), x/(1+x)^2).
1, 0, 1, 1, -2, 1, 0, 4, -4, 1, 1, -6, 11, -6, 1, 0, 9, -24, 22, -8, 1, 1, -12, 46, -62, 37, -10, 1, 0, 16, -80, 148, -128, 56, -12, 1, 1, -20, 130, -314, 367, -230, 79, -14, 1, 0, 25, -200, 610, -920, 771, -376, 106, -16, 1, 1, -30, 295, -1106, 2083, -2232, 1444, -574, 137, -18, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10... 0: 1 1: 0 1 2: 1 -2 1 3: 0 4 -4 1 4: 1 -6 11 -6 1 5: 0 9 -24 22 -8 1 6: 1 -12 46 -62 37 -10 1 7: 0 16 -80 148 -128 56 -12 1 8: 1 -20 130 -314 367 -230 79 -14 1 9: 0 25 -200 610 -920 771 -376 106 -16 1 10: 1 -30 295 -1106 2083 -2232 1444 -574 137 -18 1 ... Reformatted and extended by _Wolfdieter Lang_, Nov 24 2012 Recurrences (from A- and Z-sequences): 1 = T(6,0) = 0*0 + 1*9 +2*(-24) + 5*22 + 14*(-8)+ 42*1. -80 = T(7,2) = 1*(-12) -2*(46) -1*(-62) -2*37 -5*(-10) -14*1. - _Wolfdieter Lang_, Dec 20 2010
References
- Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Paul Barry and A. Hennessy, Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms , JIS 12 (2009) 09.5.3.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 17.
- Richard J. Mathar, Recurrence for the Atkinson-Steenwijk Integrals for Resistors in the Infinite Triangular Lattice, viXra:2208.0111, Aug. 2022.
Crossrefs
From Wolfdieter Lang, Aug 10 2017: (Start)
Programs
-
GAP
T:=Flat(List([0..10], n->List([0..n], k->Sum([0..n], j-> (-1)^(j-k)*Binomial(k+j, 2*k))))); # G. C. Greubel, Dec 15 2018
-
Magma
[[(&+[(-1)^(j-k)*Binomial(k+j, 2*k): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Dec 15 2018
-
Maple
A158454 := proc(n,k) (-1)^(n+k)*add(binomial(n+k-1-2*j,2*k-1),j=0..floor(n/2)) ; end proc; seq(seq(A158454(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Dec 17 2010
-
Mathematica
nmax = 10; t[n_, k_] := (-1)^(n+k)* Sum[Binomial[n+k-1-2*j, 2*k-1], {j, 0, Floor[n/2]}]; t[n_?EvenQ, 0] = 1; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 08 2011, after Maple *) With[{m = 15}, CoefficientList[CoefficientList[Series[(1+x)/((1-x)*(1 + x)^2 -t*x*(1-x)), {x, 0, m}, {t, 0, m}], x], t]]//Flatten (* G. C. Greubel, Dec 15 2018 *) T[n_, 0] := Boole[EvenQ[n]]; T[n_, k_] := (-1)^(n - k) Binomial[k+n-1, 2*k-1] HypergeometricPFQ[{1, (k - n)/2, (1 + k - n)/2}, {(1 - k - n)/2, (2 - k - n)/2}, 1]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // TableForm (* Peter Luschny, Aug 20 2022 *)
-
PARI
{T(n,k) = sum(j=0,n, (-1)^(j-k)*binomial(k+j, 2*k))}; for(n=0, 10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2018
-
Sage
[[sum((-1)^(j-k)*binomial(k+j, 2*k) for j in range(n+1)) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Dec 15 2018
Formula
Number triangle T(n, k) = Sum_{j=0..n} (-1)^(j-k)*binomial(k+j, 2*k) = Sum_{j=0..n-k} (-1)^(n-k-j)*binomial(n+k-j, 2*k).
O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1-x^2))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010
T(n, k) = (-1)^(n-k)*Sum_{j=0..floor(n/2)} binomial(n+k-1-2*j, 2*k-1), 0 <= k <= n, else 0. From the o.g.f. for column k after convolution. - Wolfdieter Lang, Dec 17 2010
O.g.f. row polynomials (rising powers in y): ((1+x)/(1-x))/(1+(2-y)*x+x^2) = Sum_{n>=0} S(n,sqrt(y))^2*x^n, with Chebyshev S-polynomials from A049310. - Wolfdieter Lang, Dec 15 2010
Recurrences from the A- and Z-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references.
T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), n >= 1.
T(n, k) = Sum_{j=0..n-k} A(j)*T(n-1, k-1+j), n >= k >= 1.
Here Z(0)=0 and Z(j) = A000108(j), j >= 1, (o.g.f. -1 + c(x), with the Catalan o.g.f. c(x)), and A(j) = A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0, with o.g.f. 1/c(x)^2. - Wolfdieter Lang, Dec 20 2010
T(n, k) = Sum_{m=0..n} A129818(m, k), 0 <= k <= n. - Wolfdieter Lang, Dec 15 2010
Boas-Buck recurrence for column k: R(n, k) = (1/(n-k))*Sum_{p=k..n-1}((-1)^(n-p)*(2*k+1) + 1) * R(p, k), for n > k >= 0, with input R(k, k) = 1. See a comment above. - Wolfdieter Lang, Aug 10 2017
G.f.: (1 + x)/((1 - x)*(1 + x)^2 - t*x*(1 - x)). - G. C. Greubel, Dec 15 2018
T(n, k) = (-1)^(n - k)*binomial(k + n - 1, 2*k-1)*hypergeom([1, (k - n)/2, (1 + k - n)/2], [(1 - k - n)/2, (2 - k - n)/2], 1) for k >= 1 . - Peter Luschny, Aug 20 2022
Comments