cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158477 Primes p with property that Q(p) = p^32+2^32 is prime.

Original entry on oeis.org

29, 59, 101, 103, 109, 181, 199, 379, 769, 881, 919, 977, 1097, 1213, 1303, 1583, 2099, 2113, 2441, 2521, 2617, 2777, 3067, 3739, 4133, 4289, 4519, 4931, 5039, 5113, 5227, 5417, 5743, 5783, 6143, 6373, 6691, 8053, 8209, 8287, 8513, 9109, 9203, 9689, 9787, 9923, 9941
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 20 2009

Keywords

Comments

1) Q=(p^16)^2+(2^16)^2 only for Q=4k+1 because of Fermat/Euler/Lagrange theorem concerning prime as sum of two squares.
2) It is conjectured that sequence a(n) is infinite.
3) Note the twin prime: a(3)=101, a(4)=103.
The next set of twins is a(101)=30557, a(102)=30559. - Robert Israel, Apr 05 2016

Examples

			p=3: 3^32+2^32=1853024483819137 = 1153 x 1607133116929 no prime;
also for following primes p=5, 7, 11, 13, 17, 19, 23: Q(p) no prime;
p=29: 29^32+2^32=62623297589448778360828428329074752313100292737 is prime => a(1)=29.
		

References

  • Richard E. Crandall, Carl Pomerance, Prime Numbers: A Computational Perspective, Springer 2001.
  • Leonard E. Dickson, History of the Theory of Numbers, Dover Pub. Inc., 2005.

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and isprime(t^32 + 2^32), [seq(i,i=3..10000,2)]); # Robert Israel, Apr 05 2016
  • Mathematica
    With[{c=2^32},Select[Prime[Range[1300]],PrimeQ[#^32+c]&]] (* Harvey P. Dale, May 04 2018 *)
  • PARI
    isA158477(n) = isprime(n) && isprime(n^32+4294967296) \\ Michael B. Porter, Dec 17 2009
    
  • PARI
    lista(nn) = forprime(p=3, nn, if(ispseudoprime(p^32+2^32), print1(p, ", "))); \\ Altug Alkan, Apr 05 2016

Formula

n^32+2^32 and n to be prime.