cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158484 a(n) = 49*n^2 - 7.

Original entry on oeis.org

42, 189, 434, 777, 1218, 1757, 2394, 3129, 3962, 4893, 5922, 7049, 8274, 9597, 11018, 12537, 14154, 15869, 17682, 19593, 21602, 23709, 25914, 28217, 30618, 33117, 35714, 38409, 41202, 44093, 47082, 50169, 53354, 56637, 60018, 63497, 67074, 70749, 74522, 78393
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (14*n^2 - 1)^2 - (49*n^2 - 7)*(2*n)^2 = 1 can be written as A158485(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[42, 189, 434]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{42,189,434},50]
  • PARI
    a(n) = 49*n^2-7;

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 7*x*(-6-9*x+x^2)/(x-1)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(7))*Pi/sqrt(7))/14.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(7))*Pi/sqrt(7) - 1)/14. (End)
E.g.f.: 7*(exp(x)*(7*x^2 + 7*x - 1) + 1). - Elmo R. Oliveira, Jan 27 2025