A158485 a(n) = 14*n^2 - 1.
13, 55, 125, 223, 349, 503, 685, 895, 1133, 1399, 1693, 2015, 2365, 2743, 3149, 3583, 4045, 4535, 5053, 5599, 6173, 6775, 7405, 8063, 8749, 9463, 10205, 10975, 11773, 12599, 13453, 14335, 15245, 16183, 17149, 18143, 19165, 20215, 21293, 22399
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[13, 55, 125]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
Mathematica
LinearRecurrence[{3,-3,1},{13,55,125},50]
-
PARI
a(n) = 14*n^2-1
Formula
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f: x*(-13-16*x+x^2)/(x-1)^3.
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(14))*cot(Pi/sqrt(14)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(14))*csc(Pi/sqrt(14)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(14))*csc(Pi/sqrt(14)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(14))*sin(Pi/sqrt(7))/sqrt(2). (End)
Comments