A158521 Primes which yield primes when "13" is prefixed or appended.
19, 61, 103, 127, 241, 331, 337, 367, 523, 577, 709, 829, 997, 1009, 1129, 1213, 1231, 1321, 1381, 1489, 1543, 1627, 1861, 2113, 2137, 2287, 2347, 2383, 2689, 2851, 2953, 2971, 3187, 3499, 3559, 3583, 3673, 3967, 4219, 4243, 4327, 4363, 4513, 4591, 4789
Offset: 1
Examples
Prime p=3 is not a term: "p13"=313 is prime but "13p"=133 = 7*19. For p=19, both 1319 and 1913 are prime; this is the first prime that meets the requirements of the definition, so a(1)=19.
References
- Richard E. Crandall, Carl Pomerance, Prime Numbers, Springer, 2005.
- Wladyslaw Narkiewicz, The development of prime number theory, Springer, 2000.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
cat2 := proc(a,b) ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end: for i from 1 to 800 do p := ithprime(i) ; if isprime(cat2(13,p)) and isprime(cat2(p,13)) then printf("%d,",p) ; fi; od: # R. J. Mathar, Apr 02 2009
-
Mathematica
Select[Prime[Range[1000]],AllTrue[{13*10^IntegerLength[#]+#,100#+13}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 17 2015 *)
Formula
Prime p is a term if the concatenations "13p" and "p13" both yield primes.
Extensions
337, 1231, 1321 inserted by R. J. Mathar, Apr 02 2009
Comments