cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365498 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 2, 1, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 06 2023

Keywords

Comments

The number of unitary divisors of n that are cubefree numbers (A004709). - Amiram Eldar, Sep 06 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 2, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X - X^3))[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288...,
f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.4525924794451595590371439593828547341482465114411929136723476679...
and gamma is the Euler-Mascheroni constant A001620.
Multiplicative with a(p^e) = 2 if e <= 2, and 1 otherwise. - Amiram Eldar, Sep 06 2023
From Vaclav Kotesovec, Jan 27 2025: (Start)
Following formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 1000000 terms correctly:
a(n) = A056671(n) * A368885(n).
a(n) = A034444(n) / A368248(n).
a(n) = A158522(n) / A307428(n).
a(n) = A369310(n) / A190867(n).
a(n) = A286324(n) / A368172(n). (End)

A326415 Dirichlet g.f.: zeta(2*s) / zeta(s)^3.

Original entry on oeis.org

1, -3, -3, 4, -3, 9, -3, -4, 4, 9, -3, -12, -3, 9, 9, 4, -3, -12, -3, -12, 9, 9, -3, 12, 4, 9, -4, -12, -3, -27, -3, -4, 9, 9, 9, 16, -3, 9, 9, 12, -3, -27, -3, -12, -12, 9, -3, -12, 4, -12, 9, -12, -3, 12, 9, 12, 9, 9, -3, 36, -3, 9, -12, 4, 9, -27, -3, -12, 9, -27, -3, -16, -3, 9, -12
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 18 2019

Keywords

Comments

Moebius transform applied twice to A008836.
Dirichlet inverse of A048691.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] (-1)^PrimeOmega[d] 2^PrimeNu[d], {d, Divisors[n]}], {n, 1, 75}]
    a[n_] := If[n == 1, n, -Sum[If[d < n, DivisorSigma[0, (n/d)^2] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 75}]
    f[p_, e_] := If[e == 1, -3, (-1)^e*4]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)

Formula

a(n) = Sum_{d|n} mu(n/d) * (-1)^bigomega(d) * 2^omega(d), where mu = A008683, bigomega = A001222 and omega = A001221.
a(1) = 1; a(n) = -Sum_{d|n, dA000005.
a(n) = Sum_{d|n} A008836(n/d) * A007427(d).
a(n) = Sum_{d|n} A010052(n/d) * A007428(d).
Multiplicative with a(p^e) = -3 if e = 1, and 4*(-1)^e otherwise. - Amiram Eldar, Oct 26 2020
b(n) = abs( a(n) ) is multiplicative with b(p) = 3 and b(p^e) = 4 for e > 1 and prime p. Its Dirichlet g.f. is: zeta(s)^3 / zeta(2*s)^2. - Werner Schulte, Jan 18 2023
Showing 1-2 of 2 results.