A158624 Upper limit of backward value of 5^n.
5, 2, 6, 5, 6, 7, 9, 5, 7, 8, 7, 9, 6, 9, 9, 7, 6, 5, 7, 8, 8, 5, 5, 7, 6, 9, 7, 5, 9, 9, 5, 7, 8, 9, 5, 8, 6, 7, 7, 5, 6, 5, 6, 9, 5, 7, 5, 6, 6, 9, 6, 7, 7, 6, 7, 6, 8, 8, 5, 8, 5, 6, 7, 5, 8, 9, 6, 6, 7, 5, 9, 5, 7, 9, 8, 6, 8, 8, 7, 9, 5, 8, 8, 5, 8, 5, 9, 5, 5, 8, 9, 7, 7, 9, 7, 7, 9, 6, 7, 6, 8, 9, 7, 6, 6
Offset: 0
Examples
5^3 = 125 so the backward value is 0.521, 5^10 = 9765625, so the backward value is 0.5265679. The upper limit of all values is a constant, which appears to be 0.5265679578796997657885576975995789586775656...
Links
- Robert Israel, Table of n, a(n) for n = 0..999
Programs
-
Magma
D:=87; e:=6; for d in [2..D-1] do t:=Modexp(5, e, 10^(d+1)); if t div 10^d lt 5 then e+:=2^(d-2); end if; end for; t:=Modexp(5, e, 10^D); IntegerToSequence(t, 10); // Jon E. Schoenfield, Feb 07 2018
-
Maple
A158624:= proc(N) local m,n,A; m[2]:= 3; for n from 3 to N do A:= 5&^m[n-1] mod 10^n; if A > 5*10^(n-1) then m[n]:= m[n-1] else m[n]:= m[n-1]+2^(n-3) end if end do: convert(5&^m[N] mod 10^(N),base,10); end proc; # Robert Israel, Apr 01 2012
-
Mathematica
A158624[k_] := Module[{m, n, a}, m[2] = 3; For[n = 3, n <= k, n++, a = PowerMod[5, m[n-1], 10^n]; If[ a > 5*10^(n-1), m[n] = m[n-1], m[n] = m[n-1] + 2^(n-3)]]; IntegerDigits[PowerMod[5, m[k], 10^k]] // Reverse]; A158624[105] (* Jean-François Alcover, Dec 21 2012, translated from Robert Israel's Maple program *)
Comments