cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158669 a(n) = 900*n^2 - 30.

Original entry on oeis.org

870, 3570, 8070, 14370, 22470, 32370, 44070, 57570, 72870, 89970, 108870, 129570, 152070, 176370, 202470, 230370, 260070, 291570, 324870, 359970, 396870, 435570, 476070, 518370, 562470, 608370, 656070, 705570, 756870, 809970, 864870, 921570, 980070, 1040370, 1102470
Offset: 1

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (60*n^2 - 1)^2 - (900*n^2 - 30)*(2*n)^2 = 1 can be written as A158670(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[870, 3570, 8070]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 18 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {870, 3570, 8070}, 50] (* Vincenzo Librandi, Feb 18 2012 *)
  • PARI
    for(n=1, 40, print1(900*n^2 - 30", ")); \\ Vincenzo Librandi, Feb 18 2012

Formula

G.f.: 30*x*(-29 - 32*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 20 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(30))*Pi/sqrt(30))/60.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(30))*Pi/sqrt(30) - 1)/60. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 30*(exp(x)*(30*x^2 + 30*x - 1) + 1).
a(n) = 30*A158560(n). (End)

Extensions

Comment rephrased and redundant formula replaced by R. J. Mathar, Oct 19 2009