cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158819 a(n) = (number of squarefree numbers <= n) minus round(n/zeta(2)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Daniel Forgues, Mar 27 2009

Keywords

Comments

Race between the number of squarefree numbers and round(n/zeta(2)).
First term < 0: a(172) = -1.

References

  • G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math., 48 (1917), pp. 76-92.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Clarendon Press, 1979, pp. 269-270.

Crossrefs

Cf. A008966 (1 if n is squarefree, else 0).
Cf. A013928 (number of squarefree numbers < n).
Cf. A100112 (if n is the k-th squarefree number then k else 0).
Cf. A057627 (number of nonsquarefree numbers not exceeding n).
Cf. A005117 (squarefree numbers).
Cf. A013929 (nonsquarefree numbers).
Cf. A013661 (zeta(2)).

Programs

  • Mathematica
    seq[lim_] := Accumulate[Boole[SquareFreeQ /@ Range[lim]]] - Round[Range[lim]/Zeta[2]]; seq[105] (* Amiram Eldar, Jan 20 2025 *)

Formula

Since zeta(2) = Sum_{i>=1} 1/(i^2) = (Pi^2)/6, we get:
a(n) = A013928(n+1) - n/Sum_{i>=1} 1/(i^2) = O(sqrt(n));
a(n) = A013928(n+1) - 6*n/(Pi^2) = O(sqrt(n)).