cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158833 A diagonal in the array A158825 of coefficients of successive iterations of x*C(x), where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 3, 20, 195, 2464, 38052, 693048, 14528217, 344320262, 9100230282, 265305808404, 8456446272144, 292528760419440, 10913859037065560, 436812586581170976, 18668379209883807385, 848499254768957476312
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Triangle A158835 transforms A158832 into this sequence, where A158832 is the previous diagonal in A158825.
Triangle A158835 transforms this sequence into A158834, the next diagonal in A158825.

Examples

			Array of coefficients in the i-th iteration of x*Catalan(x):
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,...;
(1),2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,(3),12,54,260,1310,6824,36478,199094,1105478,6227712,...;
1,4,(20),110,640,3870,24084,153306,993978,6544242,43652340,...;
1,5,30,(195),1330,9380,67844,500619,3755156,28558484,...;
1,6,42,315,(2464),19852,163576,1372196,11682348,100707972,...;
1,7,56,476,4200,(38052),351792,3305484,31478628,303208212,...;
1,8,72,684,6720,67620,(693048),7209036,75915708,807845676,...;
1,9,90,945,10230,113190,1273668,(14528217),167607066,...;
1,10,110,1265,14960,180510,2212188,27454218,(344320262),...;
1,11,132,1650,21164,276562,3666520,49181418,666200106,(9100230282),...; ...
where terms in parenthesis form the initial terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{x, F, G}, F = InverseSeries[x - x^2 + O[x]^(n+2)]; G = x; For[i = 1, i <= n+1, i++, G = (F /. x -> G)]; Coefficient[G, x, n]];
    Array[a, 17] (* Jean-François Alcover, Jul 13 2018, from PARI *)
  • PARI
    {a(n)=local(F=serreverse(x-x^2+O(x^(n+2))),G=x); for(i=1,n+1,G=subst(F,x,G));polcoeff(G,n)}