A158860
Triangle T(n,k)= ( 1 +T(n-1,k)*T(n,k-1) ) / T(n-1,k-1) initialized by T(n,0)=3n-2, T(n,k)=0 if k>=n, read by rows 0<=k
1, 4, 1, 7, 2, 1, 10, 3, 2, 1, 13, 4, 3, 2, 1, 16, 5, 4, 3, 2, 1, 19, 6, 5, 4, 3, 2, 1, 22, 7, 6, 5, 4, 3, 2, 1, 25, 8, 7, 6, 5, 4, 3, 2, 1, 28, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1
Examples
1; 4, 1; 7, 2, 1; 10, 3, 2, 1; 13, 4, 3, 2, 1; 16, 5, 4, 3, 2, 1; 19, 6, 5, 4, 3, 2, 1; 22, 7, 6, 5, 4, 3, 2, 1; 25, 8, 7, 6, 5, 4, 3, 2, 1; 28, 9, 8, 7, 6, 5, 4, 3, 2, 1;
References
- H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp 159-162.
Crossrefs
Cf. A130303
Programs
-
Maple
A158860 := proc(n,k) option remember; if k = 0 then 3*n-2 ; elif k >= n then 0 ; else (1+procname(n-1,k)*procname(n,k-1))/procname(n-1,k-1) ; end if; end proc: # R. J. Mathar, Jul 11 2012
-
Mathematica
Clear[e, n, k]; e[n_, 0] := 3*n - 2; e[n_, k_] := 0 /; k >= n; e[n_, k_] := (e[n - 1, k]*e[n, k - 1] + 1)/e[n - 1, k - 1]; Table[Table[e[n, k], {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]
Formula
T(n,k) = n-k, k>=1. - R. J. Mathar, Jul 11 2012
Comments