A158909 Riordan array (1/((1-x)(1-x^2)), x/(1-x)^2). Triangle read by rows, T(n,k) for 0 <= k <= n.
1, 1, 1, 2, 3, 1, 2, 7, 5, 1, 3, 13, 16, 7, 1, 3, 22, 40, 29, 9, 1, 4, 34, 86, 91, 46, 11, 1, 4, 50, 166, 239, 174, 67, 13, 1, 5, 70, 296, 553, 541, 297, 92, 15, 1, 5, 95, 496, 1163, 1461, 1068, 468, 121, 17, 1, 6, 125, 791, 2269, 3544, 3300, 1912, 695, 154, 19, 1
Offset: 0
Examples
From _Wolfdieter Lang_, Oct 22 2019: (Start) The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... ---------------------------------------------------- 0: 1 1: 1 1 2: 2 3 1 3: 2 7 5 1 4: 3 13 16 7 1 5: 3 22 40 29 9 1 6: 4 34 86 91 46 11 1 7: 4 50 166 239 174 67 13 1 8: 5 70 296 553 541 297 92 15 1 9: 5 95 496 1163 1461 1068 468 121 17 1 10: 6 125 791 2269 3544 3300 1912 695 154 19 1 ... ---------------------------------------------------------------------------- Recurrence: T(5, 2) = 16 + 13 + 5 + 7 - 1 = 40, and T(5, 0) = 3 + 2 - 2 = 3. [using _Philippe Deléham_'s Nov 12 2013 recurrence] Recurrence from A-sequence [1, 2, -1, 2, -5, ...]: T(5, 2) = 1*13 + 2*16 - 1*7 + 2*1 = 40. Recurrence from Z-sequence [1, 1, -3, 9, -28, ...]: T(5, 0) = 1*3 + 1*13 - 3*16 + 9*7 - 28*1 = 3. (End)
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, JIS 24 (2021) 21.3.8.
Programs
-
Magma
[(&+[(-1)^(j+n-k)*Binomial(2*k+j+1, j): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2021
-
Maple
T := (n,k) -> binomial(k+n+2, n-k+1)*hypergeom([1, k+n+3], [n-k+2], -1) + (-1)^(n-k)/4^(k+1): seq(seq(simplify(T(n,k)), k=0..n), n=0..9); # Peter Luschny, Oct 31 2019
-
Mathematica
Table[Sum[(-1)^(j+n-k)*Binomial[j+2*k+1, j], {j,0,n-k}], {n,0,12}, {k,0,n}] // Flatten (* G. C. Greubel, Mar 18 2021 *)
-
Sage
flatten([[sum((-1)^(j+n-k)*binomial(j+2*k+1, j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2021
Formula
Sum_{k=0..n} T(n,k) = Fibonacci(n+1)*Fibonacci(n+2) = A001654(n+1).
From Johannes W. Meijer, Jul 20 2011: (Start)
T(n, k) = Sum_{i=0..n-k} (-1)^(i+n-k) * binomial(i+2*k+1, i).
Sum_{k=0..n} T(n, k)*r^k = coeftayl(1/(1-(r+1)*x-(r+1)*x^2+x^3), x=0, n). [Barry] (End)
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) - T(n-3, k), T(0, 0) = 1, T(n, k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013
From Wolfdieter Lang, Oct 22 2019: (Start)
O.g.f. for the row polynomials (that is for the triangle): G(z, x) = 1/((1 + z)*(1 - (x + 2)*z + z^2)), and
O.g.f. for column k: x^k/((1+x)*(1-x)^(2*(k+1))) (Riordan property). (End)
T(n, k) = binomial(k + n + 2, n - k + 1)*hypergeom([1, k + n + 3], [n - k + 2], -1) + (-1)^(n - k)/4^(k + 1). - Peter Luschny, Oct 31 2019
From Michael A. Allen, Mar 20 2021: (Start)
T(n,k) = A335964(2*n+1,n-k).
T(n,k) = T(n-2,k) + binomial(n+k,2*k). (End)
Comments