A158918 n, ps(n), ps^2(n), ..., ps^9(n) forms an increasing ps-sequence of length 10.
12900, 737100, 772176, 832050, 844032, 844992, 864976, 872208, 879984, 887088, 926400, 939900, 954828, 960372, 962724, 964800, 967500, 969444, 972804, 973296, 975828, 976144, 980000, 982044, 984064
Offset: 1
Keywords
Examples
12900 = 2^2*3*5^2*43, s(12900) = 7*4*31*44, ps(12900) = 6*30*8*10 = 2^6*3^2*5^2 = 14400; s(14400) = 127*13*31, ps(14400) = 126*12*30 = 2^4*3^4*5*7 = 45360; ...
Programs
-
Sage
#(not fast!) def phi(L): m = 1 for l in L: m = m * (l[0]-1) for i in (1..l[1]-1): m = m * l[0] return m def sigma(L): m = 1 for l in L: q = 1 for i in (0..l[1]): q = q * l[0] m = m * (q-1) / (l[0]-1) return m cc = 8 START = 2 END = 10000000 for f0 in (START..END): c = 0 f = f0 Lf = list(factor(f)) s = sigma(Lf) Ls = list(factor(s)) f1 = phi(Ls) while f < f1: c = c + 1 f = f1 Lf = list(factor(f)) s = sigma(Lf) Ls = list(factor(s)) f1 = phi(Ls) if c > cc: print(c, ":", f0)
Comments