A252496
Numbers k such that arctan(1/k) = arctan(1/x) - arctan(1/y) for some integers 0
3, 7, 8, 13, 17, 18, 21, 30, 31, 32, 41, 43, 46, 47, 50, 55, 57, 68, 72, 73, 75, 76, 83, 91, 93, 98, 99, 100, 105, 111, 112, 117, 119, 122, 123, 128, 129, 132, 133, 142, 144, 155, 157, 162, 172, 173, 174, 177, 182, 183, 185, 187, 189, 192, 193, 200, 203, 211
Offset: 1
Keywords
Examples
8 is in the sequence since arctan(1/8) = arctan(1/3) - arctan(1/5)
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get all terms <= N A:= {}: for x from 1 to N/2 do ds:= select(d -> (d <= x and d >= (x^2+1)/(N-x)), numtheory:-divisors(x^2+1)); A:= A union map(d -> x + (x^2+1)/d, ds); od: A; # if using Maple 11 or earlier, uncomment the next line # sort(convert(A,list)); # Robert Israel, Dec 19 2014
-
SageMath
S = [] bound = 50 for b in range(1, bound-1): bb = b*b+1 for d in divisors(bb): if (2*b < d) & (d-b < 2*bound): c = d-b a = (b*c-1)/(b+c) S.append((c, b, a)) S.sort() print(S)
Comments