cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158920 Binomial transform of A008805 (triangular numbers with repeats).

Original entry on oeis.org

1, 2, 6, 16, 41, 102, 248, 592, 1392, 3232, 7424, 16896, 38144, 85504, 190464, 421888, 929792, 2039808, 4456448, 9699328, 21037056, 45481984, 98041856, 210763776, 451936256, 966787072, 2063597568, 4395630592, 9344909312, 19830669312
Offset: 1

Views

Author

Gary W. Adamson, Mar 30 2009

Keywords

Examples

			a(4) = 16 = (1, 3, 3, 1) dot (1, 1, 3, 3) = (1 + 3 + 9 + 3).
		

Crossrefs

Programs

  • Maple
    A000217 := proc(n) n*(n+1)/2 ; end: A008805 := proc(n) A000217( 1+floor(n/2) ) ; end: L := [seq(A008805(n), n=0..100)] ; read("transforms"); BINOMIAL(L) ; # R. J. Mathar, Apr 02 2009
  • Mathematica
    Join[{1,2},LinearRecurrence[{6,-12,8},{6,16,41},30]] (* Harvey P. Dale, Feb 25 2012 *)

Formula

A007318 * (1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...) = binomial transform of triangular numbers A000217 with repeats.
From R. J. Mathar, Apr 02 2009: (Start)
G.f.: x*(x-1)^4/(1-2*x)^3.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3), n > 5. (End)
32*a(n) = 2^(n+1) + 3*A001787(n+1) + A001788(n+1), n>=3. - R. J. Mathar, Feb 25 2023