A158930 a(n) is the smallest integer not yet in the sequence with no common base-5 digit with a(n-1).
1, 2, 3, 4, 5, 12, 6, 10, 8, 14, 15, 7, 18, 9, 13, 20, 11, 19, 25, 17, 21, 50, 16, 22, 26, 23, 27, 24, 28, 62, 29, 63, 30, 64, 31, 52, 33, 54, 41, 60, 34, 53, 46, 65, 49, 67, 45, 68, 100, 32, 75, 36, 78, 37, 79, 56, 90, 39, 93, 35, 94, 51, 98, 55, 99, 57, 95, 61, 103, 156, 69
Offset: 1
Examples
The terms a(1) to a(4) are the first integers in order because they have only a single, non-common digit. a(5)=5(base10)=10(base5) does not share a digit with a(4)=4(base10)=4(base5). The numbers 6(base10)=11(base5) to 9(base10)=14(base5) are ruled out for a(6) because they share a 1 with 10(base5). The numbers 10(base10)=20(base5) and 11(base10)=21(base5) are also ruled out for a(6) because they either have a 0 or a 1 in common with a(5)=10(base5). So a(6)=12(base10)=22(base5) with no 0 or 1 is selected.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
for S in combinat:-powerset({$0..4}) minus {{},{$0..4}} do if member(0,S) then Last[S]:= 0 else Last[S]:= 1 fi od: Next:= proc(S) global Last; local L, nL; if nops(S) = 1 then Last[S]:= Last[S]*5+S[1]; return Last[S] fi; Last[S]:= 1+Last[S]; L:= convert(Last[S],base,nops(S)); nL:= nops(L); if (not member(0,S)) then if L[-1] > 1 then Last[S]:= (nops(S))^nL; L:= [0$nL,1]; else nL:= nL-1 fi fi; L:= subs({seq(i-1=S[i],i=1..nops(S))},L); add(L[i]*5^(i-1),i=1..nL) end proc: Done:= {1}: A[1]:= 1: for n from 2 to 100 do S:= {$0..4} minus convert(convert(A[n-1],base,5),set); do x:= Next(S); if not member(x,Done) then break fi od; A[n]:= x; Done:= Done union {x}; od: seq(A[i],i=1..100); # Robert Israel, Jun 25 2018
Comments