A158938 Numbers congruent to {-3,7,9,11,13,23,25,27} mod 64.
-3, 7, 9, 11, 13, 23, 25, 27, 61, 71, 73, 75, 77, 87, 89, 91, 125, 135, 137, 139, 141, 151, 153, 155, 189, 199, 201, 203, 205, 215, 217, 219, 253, 263, 265, 267, 269, 279, 281, 283, 317, 327, 329, 331, 333, 343, 345, 347, 381, 391, 393, 395, 397, 407, 409, 411
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Crossrefs
Cf. A103621.
Programs
-
Mathematica
Select[Range[-5,500],MemberQ[{7,9,11,13,23,25,27,61},Mod[#,64]]&] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{-3,7,9,11,13,23,25,27,61},60] (* Harvey P. Dale, Jul 26 2021 *)
Formula
a(n) = a(n-8) + 64.
From Colin Barker, Oct 14 2019: (Start)
G.f.: -(3 - 10*x - 2*x^2 - 2*x^3 - 2*x^4 - 10*x^5 - 2*x^6 - 2*x^7 - 37*x^8) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-1) + a(n-8) - a(n-9) for n>8.
(End)
Comments