A159139 Number of permutations of 1..n containing the relative rank sequence { 213465 } at any spacing.
1, 37, 891, 18043, 337210, 6081686, 108469917, 1941309261, 35187952132, 649951312000, 12286366975723, 238445927000811, 4762398793018878, 98074791689121162, 2085684931155975120, 45859509146309390064, 1043533983233372354613, 24590543663448304800169
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..200
- Eric Weisstein's World of Mathematics, Permutation Pattern
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0, add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))) end: a:= n-> n! -g(n, 5, []): seq(a(n), n=6..30); # Alois P. Heinz, Jul 05 2012 # second Maple program a:= proc(n) option remember; `if`(n<6, 0, `if`(n=6, 1, ((2475-4819*n^2-2985*n+175*n^4-1021*n^3+n^6+49*n^5)*a(n-1) -(35*n^4+441*n^3-845*n^2-4147*n-489)*(n-1)^2*a(n-2) +(-1668+329*n+259*n^2)*(n-1)^2*(n-2)^2*a(n-3) -225*(n-1)^2*(n-2)^2*(n-3)^2*a(n-4))/ ((n-6)*(n+6)^2*(n+4)^2))) end: seq(a(n), n=6..30); # Alois P. Heinz, Sep 26 2012
-
Mathematica
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]]; a[n_] := n! - g[n, 5, {}]; Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Jun 19 2018, from first Maple program *)
Formula
Extensions
More terms from Alois P. Heinz, Jul 05 2012
Comments