cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159192 Number of n-colorings of the Brinkmann graph.

Original entry on oeis.org

0, 0, 0, 0, 17788848, 36105677160, 9840227891760, 838876379282760, 33316659511111200, 770358326829901488, 11901952345453621920, 134595078267062009520, 1187095862662143754320, 8549491024060638451800, 52035271347355128360528, 274779269587463677316280
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2009

Keywords

Comments

The Brinkmann graph is a quartic graph on 21 vertices and 42 edges.

Programs

  • Maple
    a:= n-> n^21 -42*n^20 +861*n^19 -11480*n^18 +111881*n^17 -848708*n^16 +5207711*n^15 -26500254*n^14 +113675219*n^13 -415278052*n^12 +1299042255*n^11 -3483798283*n^10 +7987607279*n^9 -15547364853*n^8 +25384350310*n^7 -34133692383*n^6 +36783818141*n^5 -30480167403*n^4 +18168142566*n^3 -6896700738*n^2 +1242405972*n: seq(a(n), n=0..20);

Formula

a(n) = n^21 -42*n^20 + ... (see Maple program).