cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159283 Numerator of the rational coefficient in the main term in the dynamical analog of Mertens's theorem for a full n-dimensional shift, n >= 12 (it is 1 for 2 <= n <= 11).

Original entry on oeis.org

691, 691, 691, 691, 2499347, 2499347, 109638854849, 109638854849, 19144150084038739, 19144150084038739, 1487175010978381361737, 1487175010978381361737, 351514769627820131218308186067
Offset: 12

Views

Author

Thomas Ward, Apr 08 2009

Keywords

Comments

a(n) for n >= 2 may be defined as follows. For a full n-dimensional shift, let M(N) = Sum_{L} O(L)/exp(h[L]), where the sum is over subgroups L of finite index in Z^n, O(L) is the number of points with stabilizer L, and exp(h) is the number of symbols.
Then M(N) is asymptotic to a rational times a power of Pi times a product of values of the zeta function at odd integers, and a(n) is the numerator of that rational.

Examples

			For n = 12, using the formula in terms of residues, we have residue(zeta(z+1) * ... * zeta(z-10) * N^z/z, z=11) = (691/3168740859543387253125000) * zeta(3) * zeta(5) * zeta(7) * zeta(9) * zeta(11) * Pi^42 * N^11, so a(12) = 691 and A159282(12) = 3168740859543387253125000.
		

Crossrefs

This is the numerator of a rational sequence whose denominator is A159282.

Programs

  • Maple
    # The following program generates an expression from which numerator a(n) can be read off:
    f:=n->residue(product(Zeta(z-j),j=-1..(n-2))*N^z/z,z=n-1):
    seq(f(n), n=2..30);
  • Mathematica
    Numerator[Table[Residue[Product[Zeta[z - j], {j, -1, n-2}]/z, {z, n-1}][[1]], {n, 12, 24}]] (* Vaclav Kotesovec, Sep 05 2019 *)

Formula

M(N) = residue(zeta(z+1) * ... * zeta(z-n+2) * N^z, z=n-1) = (a(n)/b(n)) * N^(d-1) * Pi^(floor(n/2)*(floor(n/2)+1)) * Product_{j=1..floor((n-1)/2)} zeta(2*j+1), where b(n) = A159282(n).

Extensions

Various sections edited by Petros Hadjicostas, Feb 20 2021