cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159309 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} (1 + sigma(n)*x)^n * x^n/n.

Original entry on oeis.org

1, 3, 10, 35, 116, 606, 2990, 11203, 65368, 567558, 3229942, 12730946, 78628616, 666394746, 3968286590, 21143707843, 160244432497, 1602468019110, 20852615681805, 320475672814590, 4102188681702086, 36438823274699332
Offset: 1

Views

Author

Paul D. Hanna, Apr 10 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + 116*x^5/5 +...
L(x) = (1+x)*x + (1+3*x)^2*x^2/2 + (1+4*x)^3*x^3/3 + (1+7*x)^4*x^4/4 +...
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 40*x^5 + 154*x^6 +... (A159308).
		

Crossrefs

Cf. A159308 (exp).

Programs

  • PARI
    {a(n)=n*polcoeff(sum(m=1,n+1,(1+sigma(m)*x+x*O(x^n))^m*x^m/m),n)}
    
  • PARI
    {a(n)=n*sum(k=0,n\2,binomial(n-k,k)*sigma(n-k)^k/(n-k))}

Formula

a(n) = n * Sum_{k=0..[n/2]} C(n-k,k)*sigma(n-k)^k/(n-k) for n>=1.

A163189 G.f.: A(x) = exp( Sum_{n>=1} (1 + A000204(n)*x)^n * x^n/n ).

Original entry on oeis.org

1, 1, 2, 5, 14, 40, 159, 812, 5133, 42942, 474619, 6708142, 121367878, 2819170132, 83571532538, 3148951107867, 151069353323782, 9219463980803329, 714951048370178409, 70448496563603216429, 8818161368662624534857
Offset: 0

Views

Author

Paul D. Hanna, Jul 22 2009

Keywords

Comments

Compare to g.f. of Fibonacci sequence: exp( Sum_{n>=1} A000204(n)*x^n/n ), where A000204 is the Lucas numbers.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 40*x^5 + 159*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, (1+(fibonacci(m-1)+fibonacci(m+1))*x+x*O(x^n))^m*x^m/m)), n)}

A163572 G.f.: A(x) = exp( Sum_{n>=1} (1 + 2*A006519(n)*x)^n * x^n/n ) where A006519(n) is the highest power of 2 dividing n.

Original entry on oeis.org

1, 1, 3, 7, 19, 39, 169, 765, 2183, 4131, 11561, 55157, 666381, 8175433, 68536455, 355280675, 1048740623, 1931107235, 5055100985, 13108206741, 38734589993, 143320957605, 1022112572635, 26523801989399, 914332703582521
Offset: 0

Views

Author

Paul D. Hanna, Jul 31 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 39*x^5 + 169*x^6 +...
log(A(x)) = (1+2*x)*x + (1+4*x)^2*x^2/2 + (1+2*x)^3*x^3/3 + (1+8*x)^4*x^4/4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, (1+2^valuation(2*m,2)*x+x*O(x^n))^m*x^m/m)), n)}
Showing 1-3 of 3 results.