A159309 L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} (1 + sigma(n)*x)^n * x^n/n.
1, 3, 10, 35, 116, 606, 2990, 11203, 65368, 567558, 3229942, 12730946, 78628616, 666394746, 3968286590, 21143707843, 160244432497, 1602468019110, 20852615681805, 320475672814590, 4102188681702086, 36438823274699332
Offset: 1
Keywords
Examples
L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + 116*x^5/5 +... L(x) = (1+x)*x + (1+3*x)^2*x^2/2 + (1+4*x)^3*x^3/3 + (1+7*x)^4*x^4/4 +... exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 40*x^5 + 154*x^6 +... (A159308).
Crossrefs
Cf. A159308 (exp).
Programs
-
PARI
{a(n)=n*polcoeff(sum(m=1,n+1,(1+sigma(m)*x+x*O(x^n))^m*x^m/m),n)}
-
PARI
{a(n)=n*sum(k=0,n\2,binomial(n-k,k)*sigma(n-k)^k/(n-k))}
Formula
a(n) = n * Sum_{k=0..[n/2]} C(n-k,k)*sigma(n-k)^k/(n-k) for n>=1.