1, 1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 5, 19, 41, 1, 1, 9, 61, 225, 406, 1, 1, 17, 217, 1481, 4801, 7127, 1, 1, 33, 817, 10737, 66361, 185523, 235147, 1, 1, 65, 3169, 81761, 988561, 5390285, 13298659, 15191966, 1, 1, 129, 12481, 638145, 15269281, 164637369
Offset: 0
Array begins:
1,1,2,7,41,406,7127,235147,15191966,1953128401,501361942127,...;
1,1,3,19,225,4801,185523,13298659,1815718305,481790947681,...;
1,1,5,61,1481,66361,5390285,803252341,224927827601,...;
1,1,9,217,10737,988561,164637369,49987302697,28333326990177,...;
1,1,17,817,81761,15269281,5149256177,3155353490257,...;
1,1,33,3169,638145,240072001,162919458273,200565037419169,...;
1,1,65,12481,5042561,3807826561,5184101454785,12792473234253121,...;
1,1,129,49537,40092417,60660860161,165425163421569,...;
1,1,257,197377,319751681,968467745281,5286172203486977,...;
1,1,513,787969,2554072065,15478671283201,169038775947894273,...;
1,1,1025,3148801,20416829441,247524381173761,5407342625815542785,...;
...
where row e.g.f.s begin:
R(0,x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 41*x^4/4! + 406*x^5/5! +...;
R(1,x) = 1 + x + 3*x^2/2! +19*x^3/3! +225*x^4/4! +4801*x^5/5! +...;
R(2,x) = 1 + x + 5*x^2/2! +61*x^3/3!+1481*x^4/4!+66361*x^5/5! +...;
...
Row e.g.f.s satisfy: R(n+1,x)^(2^n) = d/dx log( R(n,x) ):
R(1,x)^1 = d/dx log(1+x +2*x^2/2! +7*x^3/3! +41*x^4/4! +...);
R(2,x)^2 = d/dx log(1+x +3*x^2/2! +19*x^3/3! +225*x^4/4! +...);
R(3,x)^4 = d/dx log(1+x +5*x^2/2! +61*x^3/3! +1481*x^4/4! +...);
R(4,x)^8 = d/dx log(1+x +9*x^2/2! +217*x^3/3! +10737*x^4/4! +...);
...
Examples of R(n,x) = R(n+m,x/2^m)^(2^m):
R(n-1,x) = R(n,x/2)^2 and R(n+1,x) = R(n,2x)^(1/2);
R(0,x) = R(n,x/2^n)^(2^n) and R(n,x) = R(0,2^n*x)^(1/2^n).
Comments