A159363 Number of n X n arrays of squares of integers summing to 6.
12, 336, 9688, 184000, 1969212, 14039088, 75099360, 324796176, 1192537500, 3844187424, 11144826264, 29583574384, 72891000364, 168494340000, 368541092736, 768025638240, 1533632745708, 2948331631152, 5478589599000, 9873410641248, 17307337994716, 29583198551632
Offset: 2
Links
- R. H. Hardin, Table of n, a(n) for n = 2..100
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
Programs
-
Maple
C:=binomial; seq(n^2*C(n^2-1,2)+C(n^2,6),n=2..22); # Georg Fischer, Feb 18 2022
-
Mathematica
RecurrenceTable[{a[n-1] * (600*n+600*n^2-206*n^3-206*n^4-71*n^5-71*n^6+14*n^7+14*n^8-n^9-n^10) + a[n] * (-672-232*n+2424*n^2-2090*n^3+492*n^4+203*n^5-125*n^6-30*n^7+40*n^8-11*n^9+n^10) == 0, a[2]==12}, a[n], {n,2,20}] (* Georg Fischer, Feb 18 2022 *)
Formula
Empirical g.f.: -4*x^2*(1+x)*(3 + 42*x + 1522*x^2 + 18686*x^3 + 42654*x^4 + 18686*x^5 + 1522*x^6 + 42*x^7 + 3*x^8)/(-1+x)^13. - Vaclav Kotesovec, Nov 30 2012
Comments