cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A199333 Triangle read by rows: T(n,0) = T(n,n) = 1, 0 < k < n: T(n,k) = smallest prime not less than T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 7, 5, 1, 1, 7, 13, 13, 7, 1, 1, 11, 23, 29, 23, 11, 1, 1, 13, 37, 53, 53, 37, 13, 1, 1, 17, 53, 97, 107, 97, 53, 17, 1, 1, 19, 71, 151, 211, 211, 151, 71, 19, 1, 1, 23, 97, 223, 367, 431, 367, 223, 97, 23, 1, 1, 29, 127
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 09 2011

Keywords

Comments

T(n,k) = T(n,n-k);
T(n,0) = 1, cf. A000012;
T(n,1) = A008578(n), n > 0;
A199424(n) = first row in triangle A199302 containing n-th prime;
A199425(n) = number of distinct primes in rows 0 through n;
large terms in the b-file are probable primes only, row number > 50.

Examples

			0:                 1
1:               1   1
2:             1   2   1
3:           1   3   3   1
4:         1   5   7   5   1
5:       1   7  13  13   7   1
6:     1  11  23  29  23  11   1
7:   1  13  37  53  53  37  13   1
8: 1  17  53  97 107  97  53  17   1
primes in 8th row:
T(7,0) + T(7,1) = 1+13 = 14 --> T(8,1) = T(8,7) = 19;
T(7,1) + T(7,2) = 13+37 = 50 --> T(8,2) = T(8,6) = 53, already in row 7;
T(7,2) + T(7,3) = 37+53 = 90 --> T(8,3) = T(8,5) = 97;
T(7,3) + T(7,4) = 53+53 = 106 --> T(8,4) = 107.
		

Crossrefs

Cf. A159477; A199581 & A199582 (central terms), A199694 (row sums), A199695 & A199696 (row products); A007318.

Programs

  • Haskell
    a199333 n k = a199333_tabl !! n !! k
    a199333_row n = a199333_tabl !! n
    a199333_list = concat a199333_tabl
    a199333_tabl = iterate
       (\row -> map a159477 $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
  • Mathematica
    T[n_, k_] := T[n, k] = Switch[k, 0|n, 1, _, With[{m = T[n-1, k] + T[n-1, k-1]}, If[PrimeQ[m], m, NextPrime[m]]]];
    Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)

Formula

T(n,k) = A007918(T(n-1,k) + T(n-1,k-1)), 0 < k < n, T(n,0) = T(n,n) = 1.

A378357 Distance from n to the least non perfect power >= n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.
All terms are <= 2 because the only adjacent perfect powers are 8 and 9.

Crossrefs

The version for prime numbers is A007920, subtraction of A159477 or A007918.
The version for perfect powers is A074984, subtraction of A377468.
The version for squarefree numbers is A081221, subtraction of A067535.
Subtracting from n gives A378358, opposite A378363.
The opposite version is A378364.
The version for nonsquarefree numbers is A378369, subtraction of A120327.
The version for prime powers is A378370, subtraction of A000015.
The version for non prime powers is A378371, subtraction of A378372.
The version for composite numbers is A378456, subtraction of A113646.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists the non perfect powers, differences A375706, seconds A376562.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes, zeros A377436.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#+1&,n,#>1&&perpowQ[#]&]-n,{n,100}]
  • Python
    from sympy import perfect_power
    def A378357(n): return 0 if n>1 and perfect_power(n)==False else 1 if perfect_power(n+1)==False else 2 # Chai Wah Wu, Nov 27 2024

Formula

a(n) = n - A378358(n).

A378358 Least non-perfect-power >= n.

Original entry on oeis.org

2, 2, 3, 5, 5, 6, 7, 10, 10, 10, 11, 12, 13, 14, 15, 17, 17, 18, 19, 20, 21, 22, 23, 24, 26, 26, 28, 28, 29, 30, 31, 33, 33, 34, 35, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 65, 66, 67
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2024

Keywords

Comments

Perfect-powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Crossrefs

The version for prime-powers is A000015, for non-prime-powers A378372.
The union is A007916, complement A001597.
The version for nonsquarefree numbers is A067535, negative A120327 (subtract A378369).
The version for composite numbers is A113646.
The version for prime numbers is A159477.
The run-lengths are A375706.
Terms appearing only once are A375738, multiple times A375703.
The version for perfect-powers is A377468.
Subtracting from n gives A378357.
The opposite version is A378363, for perfect-powers A081676.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#+1&,n,perpowQ[#]&],{n,100}]
  • Python
    from sympy import mobius, integer_nthroot
    def A378358(n):
        def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        a = max(1,n-f(n-1))
        m, k = a, f(a)+a
        while m != k: m, k = k, f(k)+a
        return m # Chai Wah Wu, Nov 26 2024
    
  • Python
    from sympy import perfect_power
    def A378358(n): return n if n>1 and perfect_power(n)==False else n+1 if perfect_power(n+1)==False else n+2 # Chai Wah Wu, Nov 27 2024

Formula

a(n) = n - A378357(n).

A378363 Greatest number <= n that is 1 or not a perfect-power.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 7, 7, 10, 11, 12, 13, 14, 15, 15, 17, 18, 19, 20, 21, 22, 23, 24, 24, 26, 26, 28, 29, 30, 31, 31, 33, 34, 35, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 65, 66, 67
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2024

Keywords

Comments

Perfect-powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			In the non-perfect-powers ... 5, 6, 7, 10, 11 ... the greatest term <= 8 is 7, so a(8) = 7.
		

Crossrefs

The union is A007916, complement A001597.
The version for prime numbers is A007917 or A151799, opposite A159477.
The version for prime-powers is A031218, opposite A000015.
The version for squarefree numbers is A067535, opposite A070321.
The version for perfect-powers is A081676, opposite A377468.
The version for composite numbers is A179278, opposite A113646.
Terms appearing multiple times are A375704, opposite A375703.
The run-lengths are A375706.
Terms appearing only once are A375739, opposite A375738.
The version for nonsquarefree numbers is A378033, opposite A120327.
The opposite version is A378358.
Subtracting n gives A378364, opposite A378357.
The version for non-prime-powers is A378367 (subtracted A378371), opposite A378372.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#-1&,n,#>1&&perpowQ[#]&],{n,100}]
  • Python
    from sympy import mobius, integer_nthroot
    def A378363(n):
        def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        a = n-f(n)
        m, k = a, f(a)+a
        while m != k: m, k = k, f(k)+a
        return m # Chai Wah Wu, Nov 26 2024
Showing 1-4 of 4 results.