cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159553 a(n) = Sum_{k=0..n} binomial(n,k) * gcd(n,k).

Original entry on oeis.org

2, 6, 12, 28, 40, 144, 140, 536, 864, 2560, 2068, 12720, 8216, 45192, 78660, 182832, 131104, 933984, 524324, 3698240, 4890648, 13345816, 8388652, 67390464, 60129600, 225470544, 279938160, 1032462256, 536870968, 5018059200
Offset: 1

Views

Author

Leroy Quet, Apr 14 2009

Keywords

Comments

For the purpose of this sequence, gcd(n,0) = n, for all positive integers n.
a(n) is a multiple of n, for all nonnegative integers n.

Crossrefs

Programs

  • Maple
    A159553 := proc(n) add(binomial(n, k)*gcd(k, n), k=0..n) ; end: seq(A159553(n),n=1..40) ; # R. J. Mathar, Apr 29 2009
  • Mathematica
    Table[Sum[Binomial[n, k] GCD[n, k], {k, 0, n}], {n, 30}] (* Michael De Vlieger, Oct 30 2017 *)

Formula

a(n) = A159068(n) + n.
a(n) = 2^n * Sum_{d|n} (phi(d)/d) * Sum_{k=1..d} (-1)^(k*n/d)*cos(k*Pi/d)^n.

Extensions

Extended by R. J. Mathar, Apr 29 2009
Ambiguous term a(0) removed by Max Alekseyev, Jan 09 2015