cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159582 Expansion of (1+6*x+x^2-2*x^3)/((x^2+2*x-1)*(x^2-2*x-1)), bisection is NSW numbers.

Original entry on oeis.org

1, 6, 7, 34, 41, 198, 239, 1154, 1393, 6726, 8119, 39202, 47321, 228486, 275807, 1331714, 1607521, 7761798, 9369319, 45239074, 54608393, 263672646, 318281039, 1536796802, 1855077841, 8957108166, 10812186007, 52205852194, 63018038201, 304278004998
Offset: 0

Views

Author

Creighton Dement, Apr 16 2009

Keywords

Comments

Define c = [0, 7, 0, 41, 0, 239, 0, 1393, 0, 8119, 0, 47321, ...] where (c(2n+1)) = A002315(n+1) (NSW numbers). Then (a(n)) has the property c(2n) - a(2n) = -a(2n) = -A002315(n) and c(2n+1) - a(2n+1) = A002315(n) (NSW numbers).

Crossrefs

Cf. A002315.

Programs

  • PARI
    Vec((1+6*x+x^2-2*x^3) / ((x^2+2*x-1)*(x^2-2*x-1)) + O(x^50)) \\ Colin Barker, Jun 29 2017

Formula

a(n) = 3*A078057(n)/2 - (-1)^n*A078057(n)/2. - R. J. Mathar, Nov 10 2009
From Colin Barker, Jun 29 2017: (Start)
a(n) = 6*a(n-2) - a(n-4) for n>3.
a(n) = ((-(-2+sqrt(2))*(-1+sqrt(2))^n - (-1-sqrt(2))^n*(2+sqrt(2)) - 3*(-(1-sqrt(2))^n*(-2+sqrt(2)) - (1+sqrt(2))^n*(2+sqrt(2))))) / (4*sqrt(2)).
(End)