A159582 Expansion of (1+6*x+x^2-2*x^3)/((x^2+2*x-1)*(x^2-2*x-1)), bisection is NSW numbers.
1, 6, 7, 34, 41, 198, 239, 1154, 1393, 6726, 8119, 39202, 47321, 228486, 275807, 1331714, 1607521, 7761798, 9369319, 45239074, 54608393, 263672646, 318281039, 1536796802, 1855077841, 8957108166, 10812186007, 52205852194, 63018038201, 304278004998
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Crossrefs
Cf. A002315.
Programs
-
PARI
Vec((1+6*x+x^2-2*x^3) / ((x^2+2*x-1)*(x^2-2*x-1)) + O(x^50)) \\ Colin Barker, Jun 29 2017
Formula
From Colin Barker, Jun 29 2017: (Start)
a(n) = 6*a(n-2) - a(n-4) for n>3.
a(n) = ((-(-2+sqrt(2))*(-1+sqrt(2))^n - (-1-sqrt(2))^n*(2+sqrt(2)) - 3*(-(1-sqrt(2))^n*(-2+sqrt(2)) - (1+sqrt(2))^n*(2+sqrt(2))))) / (4*sqrt(2)).
(End)
Comments