cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159596 G.f.: A(x) = exp( Sum_{n>=1} [ D^n x/(1-x)^2 ]^n/n ), where differential operator D = x*d/dx.

Original entry on oeis.org

1, 1, 5, 22, 121, 863, 8476, 118131, 2361313, 67467236, 2731757961, 156417295405, 12605225573076, 1432381581679361, 229016092616239411, 51628631138952017332, 16402709158903948390585, 7351149638643155728435357
Offset: 0

Views

Author

Paul D. Hanna, May 05 2009

Keywords

Comments

Conjecture: limit_{n->oo} a(n)^(1/n^2) = 2^(1/4). - Vaclav Kotesovec, Nov 17 2023

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 22*x^3 + 121*x^4 + 863*x^5 +...
log(A(x)) = Sum_{n>=1} [x + 2^(n+1)*x^2 + 3^(n+1)*x^3 +...]^n/n.
D^n x/(1-x)^2 = x + 2^(n+1)*x^2 + 3^(n+1)*x^3 + 4^(n+1)*x^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,sum(k=1,n,k^(m+1)*x^k+x*O(x^n))^m/m)));polcoeff(A,n)}

Formula

G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k>=1} k^(n+1)*x^k]^n/n ) where A(x) = Sum_{k>=1} a(k)*x^k.