cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159597 G.f.: A(x) = exp( Sum_{n>=1} [ D^n x/(1-x)^3 ]^n/n ), where differential operator D = x*d/dx.

Original entry on oeis.org

1, 1, 7, 37, 245, 2094, 24661, 410376, 9809637, 334520167, 16192227784, 1107914634442, 106788033119369, 14525652771018918, 2780328926392863928, 751651711717655433750, 286240041470280077141769
Offset: 0

Views

Author

Paul D. Hanna, May 05 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 37*x^3 + 245*x^4 + 2094*x^5 +...
log(A(x)) = Sum_{n>=1} [x + 2^n*3*x^2 + 3^n*6*x^3 +...]^n/n.
D^n x/(1-x)^3 = x + 2^n*3*x^2 + 3^n*6*x^3 + 4^n*10*x^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,sum(k=1,n,k^m*k*(k+1)/2*x^k+x*O(x^n))^m/m)));polcoeff(A,n)}

Formula

G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k>=1} k^n*k(k+1)/2*x^k]^n/n ) where A(x) = Sum_{k>=1} a(k)*x^k.