A159615 The slowest increasing sequence beginning with a(1)=2 such that a(n) and n are both odious or both not odious.
2, 4, 5, 7, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 101, 103, 105, 107, 109, 111
Offset: 1
Examples
If n=3, then k=1, j=0, therefore a(6)=(10*3-4*0)/3=10.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Vladimir Shevelev, Several results on sequences which are similar to the positive integers, arXiv:0904.2101 [math.NT], 2009.
Programs
-
Maple
read("transforms") ; isA000069 := proc(n) option remember ; RETURN( type(wt(n),'odd') ) ; end: A159615 := proc(n) option remember; if n = 1 then 2; else for a from procname(n-1)+1 do if isA000069(a) = isA000069(n) then RETURN(a) ; fi; od: fi; end: seq(A159615(n),n=1..120) ; # R. J. Mathar, Aug 17 2009
-
Mathematica
odiousQ[n_] := OddQ[DigitCount[n, 2, 1]]; a[1] = 2; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[FreeQ[Array[a, n-1], k] && odiousQ[n] && odiousQ[k] || !odiousQ[n] && !odiousQ[k], Return[k] ] ]; Array[a, 80] (* Jean-François Alcover, Dec 10 2017 *)
Formula
Extensions
Edited and extended by R. J. Mathar, Aug 17 2009