A159626 Positive numbers y such that y^2 is of the form x^2+(x+577)^2 with integer x.
545, 577, 613, 2657, 2885, 3133, 15397, 16733, 18185, 89725, 97513, 105977, 522953, 568345, 617677, 3047993, 3312557, 3600085, 17765005, 19306997, 20982833, 103542037, 112529425, 122296913, 603487217, 655869553, 712798645, 3517381265
Offset: 1
Examples
(-33, a(1)) = (-33, 545) is a solution: (-33)^2+(-33+577)^2 = 1089+295936 = 297025 = 545^2. (A130005(1), a(2)) = (0, 577) is a solution: 0^2+(0+577)^2 = 332929 = 577^2. (A130005(3), a(4)) = (1568, 2657) is a solution: 1568^2+(1568+577)^2 = 2458624+4601025 = 7059649 = 2657^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
PARI
{forstep(n=-36, 50000000, [3, 1], if(issquare(2*n^2+1154*n+332929, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=545, a(2)=577, a(3)=613, a(4)=2657, a(5)=2885, a(6)=3133.
G.f.: (1-x)*(545+1122*x+1735*x^2+1122*x^3+545*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 577*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (579+34*sqrt(2))/577 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (855171+556990*sqrt(2))/577^2 for n mod 3 = 1.
Comments