A159636 Dimension of space of cusp forms of weight 5/2, level 4*n and trivial character.
0, 0, 1, 0, 3, 3, 4, 2, 6, 6, 7, 6, 9, 9, 14, 6, 12, 12, 13, 12, 20, 15, 16, 16, 18, 18, 21, 18, 21, 30, 22, 16, 32, 24, 32, 24, 27, 27, 38, 28, 30, 42, 31, 30, 48, 33, 34, 36, 36, 36, 50, 36, 39, 45, 50, 40, 56, 42, 43, 60
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- H. Cohen and J. Oesterle, Dimensions des espaces de formes modulaires, Modular Functions of One Variable. VI, Proc. 1976 Bonn conf., Lect. Notes in Math. 627, Springer-Verlag, 1977, pp. 69-78.
- S. R. Finch, Primitive Cusp Forms, April 27, 2009. [Cached copy, with permission of the author]
Programs
-
Magma
[[4*n,Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,5/2)))] : n in [1..75]];
-
Mathematica
dedekindPsi[n_Integer] := n*Times @@ (1 + 1/First /@ FactorInteger[n]); \[Chi][n_Integer] := Sum[EulerPhi[GCD[d, n/d]], {d, Divisors[n]}]; r[(p_)?PrimeQ, n_Integer] := -1+ Last[Flatten[Cases[FactorInteger[p*n], {p, _}]]]; \[Alpha][n_Integer] := Block[{rn}, rn = r[2, n]; If[EvenQ[rn], 3*2^(rn/2 - 1), 2^(rn/2 + 1/2)]]; \[Beta][n_Integer] := Block[{rn}, rn = r[2, n]; Which[rn >= 4, \[Alpha][n], rn === 3, 3, rn === 2 && Or @@ OddQ[(r[#1, n] & ) /@ Select[First /@ FactorInteger[n], Mod[#1, 4] === 3 & ]], 2, True, 3/2]]; s[5/2, n_Integer] := (1/8)* dedekindPsi[n] - \[Beta][n]*(\[Chi][n]/2/\[Alpha][n]); s[5/2, #] & /@ Range[4, 240, 4] (* Wouter Meeussen, cf. Finch reference, Mar 31 2014 *)