A159688 Triangle read by rows, denominators of Jakob Bernoulli's "Sums of Powers" triangle.
1, 2, 2, 3, 2, 6, 4, 2, 4, 5, 2, 3, -30, 6, 2, 12, -12, 7, 2, 2, -6, 42, 8, 2, 12, -24, 12, 9, 2, 3, -15, 9, -30, 10, 2, 4, -10, 2, -20, 11, 2, 6, -1, 1, -2, 66, 12, 2, 12, -8, 6, -8, 12, 13, 2, 1, -6, 7, -10, 3, -2730, 14, 2, 12, -60, 28, -20, 12, -420, 15, 2, 6, -30, 18, -10, 6, -90, 6, 16, 2, 4, -24, 12, -16, 12, -24, 4
Offset: 0
Examples
Let row 0 = 1; followed by the corrected table, giving denominators: 1; 2, 2; 3, 2, 6; 4, 2, 4; 5, 2, 3, -30; 6, 2, 12, -12; 7, 2, 2, -6, 42; 8, 2, 12, -24, 12; 9, 2, 3, -15, 9, -30; 10, 2, 4, -10, 2, -20; 11, 2, 6, -1, 1, -2, 66; ... The complete triangle with row 0 = 1, along with numerators: 1; 1/2, 1/2; 1/3, 1/2, 1/6; 1/4, 1/2, 1/4; 1/5, 1/2, 1/3, -1/30; 1/6, 1/2, 5/12, -1/12; 1/7, 1/2, 1/2, -1/6, 1/42; 1/8, 1/2, 7/12, -7/14, 1/12; 1/9, 1/2, 2/3, -7/15, 1/2, -3/20; 1/10, 1/2, 3/4, -7/10, 1/2, -3/20; 1/11, 1/2, 5/6, -1/1, 1/1, -1/2, 5/66; ...
References
- Jakob Bernoulli, "Ars conjectandi", posthumously published in 1713, in which Bernoulli gives the table "Summae Potestatum (Sums of Powers) [cf. Young, p. 86].
- Robert M. Young, "Excursions in Calculus", MAA, 1992.
Links
- Seiichi Manyama, Rows n = 0..200, flattened
- Wikipedia, Faulhaber's formula.
Crossrefs
Cf. A106458.
Programs
-
Mathematica
f[n_, x_] := f[n, x] = ((x+1)^(n+1) - 1)/(n+1) - Sum[Binomial[n+1, k]*f[k, x], {k, 0, n-1}]/(n+1); f[0, x_] := x; row[n_] := CoefficientList[f[n, x], x] // Reverse // (Sign[#]*Denominator[#])& // DeleteCases[#,0]&; Table[row[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 29 2012 *)
Extensions
Extended to 15 rows by Jean-François Alcover, Dec 29 2012
Comments