cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159715 Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.

Original entry on oeis.org

4, 18, 72, 270, 972, 3402, 11664, 39366, 131220, 433026, 1417176, 4605822, 14880348, 47829690, 153055008, 487862838, 1549681956, 4907326194, 15496819560, 48814981614, 153418513644, 481176247338, 1506290861232, 4707158941350
Offset: 2

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Programs

  • Magma
    [2*n*3^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    LinearRecurrence[{6,-9}, {}, 30] (* or *) Table[2*n*3^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    for(n=2, 30, print1(2*n*3^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
    

Formula

a(n) = (copies*n)*(copies+1)^(n-2), here: copies = 2.
Apparently a(n) = A027261(n-1), n > 2. - R. J. Mathar, Apr 21 2009
Conjectures from Colin Barker, Mar 23 2018: (Start)
G.f.: 2*x^2*(2 - 3*x) / (1 - 3*x)^2.
a(n) = 2*3^(n-2)*n for n>1.
a(n) = 6*a(n-1) - 9*a(n-2) for n>3. (End)
E.g.f.: 2*x*exp(3*x)/3. - G. C. Greubel, Jun 01 2018
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (9/2)*log(3/2) - 3/2.
Sum_{n>=2} (-1)^n/a(n) = 3/2 - (9/2)*log(4/3). (End)