cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A334778 Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly k local maxima.

Original entry on oeis.org

1, 0, 1, 0, 4, 2, 0, 18, 66, 6, 0, 72, 1168, 1192, 88, 0, 270, 16220, 61830, 33600, 1480, 0, 972, 202416, 2150688, 3821760, 1268292, 40272, 0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944, 0, 11664, 27517568, 1629254640, 15313310208, 36381368048, 24342647424, 3963672720, 71865728
Offset: 0

Views

Author

Andrew Howroyd, May 13 2020

Keywords

Comments

T(n,k) is divisible by n for n > 0.

Examples

			Triangle begins:
   1;
   0,    1;
   0,    4,       2;
   0,   18,      66,        6;
   0,   72,    1168,     1192,        88;
   0,  270,   16220,    61830,     33600,      1480;
   0,  972,  202416,  2150688,   3821760,   1268292,    40272;
   0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944;
  ...
The T(2,1) = 4 permutations of 1122 with 1 local maximum are 1122, 1221, 2112, 2211.
The T(2,2) = 2 permutations of 1122 with 2 local maxima are 1212, 2121.
		

Crossrefs

Columns k=0..6 are A000007, A027261(n-1), A159716, A159717, A159718, A159719, A159720.
Row sums are A000680.
Main diagonal is A334779.
The version for permutations of 1..n is A263789.

Programs

  • PARI
    CircPeaksBySig(sig, D)={
      my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
        my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
        mapput(FC, key, z)); z);
      local(FC=Map());
      vector(#D, i, my(k=D[i], lev=#sig); if(lev==1, k==1, my(m=sig[lev]); lev*sum(j=1, min(m,k), m*binomial(m-1,j-1)*F(lev-1,k-j,j-1)/j)));
    }
    Row(n)={ if(n==0, [1], CircPeaksBySig(vector(n,i,2), [0..n])) }
    { for(n=0, 8, print(Row(n))) }

Formula

T(n,k) = n*(2*F(2,n-1,k-1,0) + F(2,n-1,k-2,1)) for n > 1 where F(m,n,p,q) = Sum_{i=0..p} Sum_{j=0..min(m-i, q)} F(m, n-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) for n > 1 with F(m,1,0,q) = binomial(m-1, q), F(m,1,p,q) = 0 for p > 0.
A334780(n) = Sum_{k=1..n} k*T(n,k).
Showing 1-1 of 1 results.